If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36+b^2=15^2
We move all terms to the left:
36+b^2-(15^2)=0
We add all the numbers together, and all the variables
b^2-189=0
a = 1; b = 0; c = -189;
Δ = b2-4ac
Δ = 02-4·1·(-189)
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{21}}{2*1}=\frac{0-6\sqrt{21}}{2} =-\frac{6\sqrt{21}}{2} =-3\sqrt{21} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{21}}{2*1}=\frac{0+6\sqrt{21}}{2} =\frac{6\sqrt{21}}{2} =3\sqrt{21} $
| 4x-8=4x+42 | | b/12=3 | | 4x-8=4x+31 | | 10-2c=8c | | -5/6c-1/2=-3/4+5/8c | | -6(p-85)=-24 | | 4x+`8=2x+26 | | (4x-1)+(9x-21)=180 | | 7(4+u)+7u=98 | | 35-20+33x=190+2x+20 | | 2(x+0.5)=6(x+5) | | 133=-7k | | 15k-5-20k=-6k+6 | | 1/3(d+1)=5 | | 30+z/7=41-4 | | 6x-2+1x=75 | | /7k-11=19+8k | | 2=a/9 | | 1=a/9 | | 4x+36+4x+36+2x+58=180 | | 4x-8=4x+11 | | -50=3c+4(c-2) | | .10u=1,000,000u= | | 12v+14+10v=80. | | (x-110)(x-119)=295 | | x+27+29=180 | | 7h-3=3 | | 5x+5+10x+15=80 | | 5(2x+8)=70 | | 100=5x-310 | | 7+6(3x-2)=-131 | | -6(x+2)=-48 |